Brief Communications

Reaction of chloromercuriocobaltacarborane with derivatives of the undecaborate anion

I. A. Lobanova, O. M. Khitrova, P. V. Petrovskii, and V. I. Bregadze*

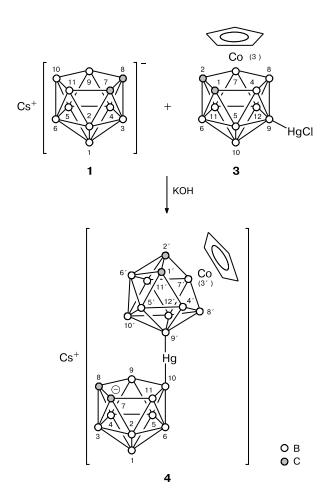
A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russian Federation.

Fax: +7 (095) 135 5085. E-mail: bre@ineos.ac.ru

The reactions of the undecaborate anion $Cs^+C_2B_9H_{12}^-$ (1) and *exo-nido*-ruthenacarborane *exo-nido*-5,6,10-[Cl(Ph₃P)₂Ru]-5,6,10-(μ -H)₃-10-H-7,8-C₂B₉H₈ (2) with the 9-chloromercurated cobaltacarborane, *viz.*, 3-(η^5 -Cp)-9-ClHg-3,1,2-CoC₂B₉H₁₀ (3), afforded Cs[10-{3´-(η^5 -Cp)-3´,1´,2´-CoC₂B₉H₁₀-9´-Hg}-7,8-C₂B₉H₁₁] (4) and 5,6,10-*exo-nido*-[Cl(Ph₃P)₂Ru]-5,6,10-(μ -H)₃-10-{3´-(η^5 -Cp)-3´,1´,2´-CoC₂B₉H₁₀-9´-Hg}-7,8-C₂B₉H₈ (5), respectively. The latter compound exists as two isomers. Compound 5 was prepared also by the reaction of compound 4 with Ru(PPh₃)₃Cl₂.

Key words: exo-nido-ruthenacarborane, cobaltacarborane, mercuration.

Earlier, we have studied the electrophilic substitution in ferracarborane 1,2 $3\text{-}(\eta^5\text{-}Cp)\text{-}4\text{-}SMe_2\text{-}3,1,2\text{-}FeC_2B_9H_{10}$ derived from the charge-compensated monoanion [9-SMe_2-7,8-C_2B_9H_{10}]^- as well as mercuration of exo-nido-ruthenacarborane $exo\text{-}nido\text{-}5,6,10\text{-}[\text{Cl}(\text{Ph}_3\text{P})_2\text{Ru}]\text{-}5,6,10\text{-}(\mu\text{-}H)_3\text{-}10\text{-}H\text{-}7,8\text{-}C_2B_9H_8}$ in detail. We used various mercurating agents. 4,5 It was demonstrated for the first time that mercury salts of metallacarboranes or, more precisely, mercurated ferracarborane $3\text{-}(\eta^5\text{-}\text{Cp})\text{-}4\text{-}\text{SMe}_2\text{-}8\text{-}\text{CF}_3\text{COOHg-}3,1,2\text{-}\text{FeC}_2B_9H_9,$ can be used for mercuration. This reaction afforded 5′,6′,10′- $exo\text{-}nido\text{-}[\text{Cl}(\text{Ph}_3\text{P})_2\text{Ru}]\text{-}5′,6′,10′-(\mu\text{-}H)_3\text{-}10′-\{3\text{-}(\eta^5\text{-}\text{Cp})\text{-}4\text{-}\text{SMe}_2\text{-}3,1,2\text{-}\text{FeC}_2B_9H_9\text{-}8\text{-}\text{Hg}\}\text{-}7′,8′-\text{C}_2B_9H_8.}$


The aim of the present study was to examine the possibility of using other mercurated metallacarboranes

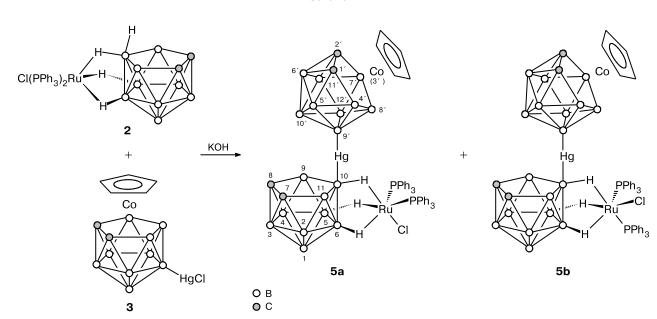
as mercurating agents. For this purpose, we carried out mercuration of the undecaborate anion $Cs^+C_2B_9H_{12}^-$ (1) and *exo-nido*-ruthenacarborane *exo-nido*-5,6,10-[Cl(Ph₃P)₂Ru]-5,6,10-(μ -H)₃-10-H-7,8-C₂B₉H₈ (2) with 3-(η ⁵-Cp)-9-ClHg-3,1,2-CoC₂B₉H₁₀ (3).

Results and Discussion

Mercuration of anion 1 and compound 2 with 9-chloromercurated cobaltacarborane 3 was carried out in a THF—water—EtOH mixture in the presence of alkali at room temperature. It was found that mercuration of undecaborate anion 1 gave rise to the only product, *viz.*, the anion of unsymmetrical mercuro derivative 4 (Scheme 1).

Scheme 1

Yellow-orange crystalline compound **4** is insoluble in nonpolar solvents and readily soluble in acetone and THF.


The ^{11}B NMR spectrum of **4** has signals of two carborane fragments at δ 13—35, among which is a singlet of the B(9) atom of the (η^5 -Cp)-3′,1′,2′-CoC₂B₉H₁₀ fragment at δ 13.85.

Mercuration of *exo-nido*-ruthenacarborane **2** with compound **3** afforded 5,6,10-*exo-nido*-[Cl(Ph₃P)₂Ru]-5,6,10-(μ -H)₃-10-{3'-(η ^5-Cp)-3',1',2'-CoC₂B₉H₁₀-9'-Hg}-7,8-C₂B₉H₈ (**5**). Like all *exo-nido*-ruthenacarboranes synthesized earlier, complex **5** was prepared as a mixture of geometric isomers due to isomerism of the ligands with respect to the six-coordinate ruthenium atom.^{3,4,7} In isomer **5a**, the HB(10) hydrogen atom of the open plane of the *exo-nido*-carborane ligand and the chlorine atom are in *trans* positions, whereas these atoms in another isomer (**5b**) are in *cis* positions (Scheme 2). The ³¹P NMR spectrum (acetone-d₆) has two doublets with equal integral intensities of isomer **5b** and a singlet of the phosphorus atoms of isomer **5a**. The **5a**: **5b** ratio is 2.2:1, *i.e.*, *trans* isomer **5a** prevails in solution.

The independent synthesis of compound 5 by the reaction of complex 4 with Ru(PPh₃)₃Cl₂ in THF at room temperature also gave rise to the *trans* isomer as the major product (the *trans/cis* ratio was 1.37).

Red-orange crystalline compound 5 is readily soluble in acetone, THF, CH_2Cl_2 , and $CHCl_3$ and insoluble in hexane. This compound is air-stable in the solid state and slowly decomposes in solutions. The composition and structure of complex 5 were determined by elemental analysis and 1H and ^{11}B NMR spectroscopy. The 1H NMR spectrum (in $(CD_3)_2CO$) of 5a,b has no signals of the

Scheme 2

extra hydrogen atom in the hydride region and shows multiplets of the bridging protons B—H—Ru at δ –4—17. In addition, the ^{1}H NMR spectra have singlets of the protons of the Cp ring at δ 5.96 and 6.01, singlets of the protons at the carbon atoms of the carborane cages at δ 4.77 and 4.48, and multiplets of the protons of the phenyl rings at δ 7.10—7.75. The ^{11}B NMR spectrum of compound 5a has a double set of signals of two carborane ligands, among which a singlet of the B(9) atom of the *closo*-cobaltacarborane core at δ 11.20 is pronounced.

To summarize, we demonstrated that $3-(\eta^5-Cp)-9-ClHg-3,1,2-CoC_2B_9H_{10}$ can be used as a mercurating agent and prepared unsymmetrical metallacarborane clusters in which the *exo-nido*-ruthenacarborane and *closo*-cobalta- or dicarbo-*nido*-undecaborate fragments are linked through the mercury atom.

Experimental

All reactions were carried out under an inert atmosphere. The products were isolated in air. The starting compounds 1,³ 2,⁸ 3,⁶ and Ru(PPh₃)₃Cl₂ ⁹ were prepared according to known procedures.

The ¹H, ³¹P, and ¹¹B NMR spectra were measured on a Bruker AMX-400 spectrometer operating at 400.13 (¹H), 161.98 (³¹P), and 128.38 MHz (¹¹B), respectively.

Cesium 10-(3'-cyclopentadienyl-9'-mercurio-3'-cobalta-1',2'-dicarba-closo-dodecaborane)-7,8-dicarba-nido-undecaborate(8) (4). Compound 1 (0.06 g, 0.37 mmol) and a solution of 3 (0.18 g, 0.37 mmol) in THF (15 mL) were added to a solution of KOH (0.05 g, 0.85 mmol) in water (2 mL) and 95% EtOH (0.5 mL) at 5-7 °C. The reaction mixture was stirred at 20 °C for 6 h and then concentrated. The residue was dissolved in acetone and a transparent solution of CsCl in water was added. The precipitate that formed was filtered off, washed with water, and dried to prepare compound 4 in a yield of 0.18 g (69%). Found (%): C, 15.72; H, 3.61; B, 27.00. C₉H₂₆B₁₈CoCsHg. Calculated (%): C, 15.00; H, 3.63; B, 26.98. ¹H NMR (acetone-d₆), δ: 5.88 (s, 5 H, Cp ring); 4.66 (s, 1 H, C—H of carborane); 4.32 (s, 1 H, C—H of carborane). ¹¹B NMR (acetone- d_6), δ : 13.85 (s, 1 B, B(9)); 8.74 (d, 1 B, J = 143 Hz); 4.86 (d, 1 B, J = 148 Hz); -3.40 (d, 3 B, J = 142 Hz); -13.21 (d, 3 B, J = 142 Hz);2 B, J = 167 Hz); -14.69 (d, 4 B, J = 160 Hz); -16.20 (d, 1 B, J = 182 Hz); -17.58 (d, 1 B, J = 186 Hz); -21.36 (d, 3 B, J =147 Hz); -34.43 (d, 1 B, J = 135 Hz).

5,6,10-exo-nido-(Bis-triphenylphosphinochlororuthena)-5,6,10-tris-hydrido-10-(3´-cyclopentadienyl-9´-mercurio-3´-cobalta-1´,2´-dicarba-closo-dodecaborane)-7,8-dicarba-nido-undecaborane(8) (5). A. Compound 2 (0.30 g, 0.38 mmol) and a solution of 3 (0.29 g, 0.59 mmol) in THF (25 mL) were added to a solution of KOH (0.04 g, 0.70 mmol) in water (4 mL) and 95% EtOH (2 mL). The reaction mixture was stirred at 20 °C for 2 h, concentrated, and chromatographed on SiO₂ (CH₂Cl₂ as the eluent). After recrystallization from a CH₂Cl₂—hexane mixture, compound 5 was obtained in a yield of 0.41 g (89%). Found (%): C, 43.42; H, 4.65; B, 15.53. $C_{45}H_{56}B_{18}CoHgP_2Ru$.

Calculated (%): C, 43.25; H, 4.52; B, 15.57. Compound **5b** (0.11 g) and compound **5a** (0.27 g) were successively eluted by repeated chromatography on SiO_2 (CH₂Cl₂).

Compound 5a. ³¹P NMR (acetone-d₆), δ : 47.72 (s, 2 P). ¹¹B NMR (acetone-d₆), δ : 11.20 (s, 1 B); 7.77 (d, 1 B, J = 140 Hz); 4.08 (d, 1 B, J = 140 Hz); -3.77 (d, 5 B, J = 124 Hz); -4.63 (d, 1 B); -14.91 (br.m, 3 B); -20.77 (d, 3 B, J = 96 Hz); -22.41 (d, 1 B, J = 89 Hz); -24.85 (d, 1 B, J = 76 Hz); -33.14 (br.m, 1 B).

Compound 5b. ${}^{31}P$ NMR (acetone-d₆), δ : 54.29 and 47.62 (both d, 1 P each, J = 29 Hz).

B. A solution of compound **4** (0.04 g, 0.055 mmol) and Ru(PPh₃)₃Cl₂ (0.06 g, 0.063 mmol) in THF (10 mL) was stirred at 20 °C for 4 h, concentrated, and chromatographed on SiO₂ (CH₂Cl₂ as the eluent). Compound **5** was prepared in a yield of 0.04 g (57%).

This study was financially supported by the Russian Foundation for Basic Research (Project No. 02-03-32192) and the Program of Basic Research of the Chemistry and Materials Science Division of the Russian Academy of Sciences (Project No. 591-07).

References

- V. Timofeev, I. A. Lobanova, A. R. Kudinov, V. I. Meshcheryakov, O. L. Tok, P. V. Petrovskii, F. M. Dolgushin, Z. A. Starikova, and V. I. Bregadze, *Izv. Akad. Nauk, Ser. Khim.*, 2000, 1609 [Russ. Chem. Bull., Int. Ed., 2000, 49, 1598].
- V. I. Bregadze, I. A. Lobanova, S. V. Timofeev, A. R. Kudinov,
 V. I. Meshcheryakov, O. L. Tok, P. V. Petrovskii, and Z. A. Starikova, J. Organomet. Chem., 2002, 657, 171.
- I. T. Chizhevsky, I. A. Lobanova, V. I. Bregadze, P. V. Petrovskii, V. A. Antonovich, A. V. Poljakov, A. I. Yanovsky, and Yu. T. Struchkov, *Mendeleev. Commun.*, 1991, 477.
- A. Lobanova, V. I. Bregadze, S. V. Timofeev, P. V. Petrovskii, Z. A. Starikova, and F. M. Dolgushin, J. Organomet. Chem., 2000, 597, 48.
- I. A. Lobanova, S. V. Timofeev, A. R. Kudinov, V. I. Meshcheryakov, P. V. Petrovskii, Z. A. Starikova, and V. I. Bregadze, *Izv. Akad. Nauk, Ser. Khim.*, 2002, 480 [Russ. Chem. Bull., Int. Ed., 2002, 51, 517].
- 6. A. Ya. Usyatinskii, O. B. Zhidkova, P. V. Petrovskii, and V. I. Bregadze, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 719 [*Russ. Chem. Bull.*, 1994, **43**, 671 (Engl. Transl.)].
- 7. G. D. Kolomnikova, P. V. Sorokin, I. T. Chizhevskii, P. V. Petrovskii, V. I. Bregadze, F. M. Dolgushin, and A. I. Yanovsky, *Izv. Akad. Nauk, Ser. Khim.*, 1997, 2076 [Russ. Chem. Bull., 1997, 46, 1971 (Engl. Transl.)].
- M. F. Hawthorne, D. C. Young, P. M. Garrett, D. A. Owen,
 S. G. Schwerin, F. N. Tebbe, and P. A. Werner, *J. Am. Chem. Soc.*, 1968, 90, 862.
- 9. T. A. Stephenson and G. Wilkinson, *J. Inorg. Nucl. Chem.*, 1966, **28**, 945.

Received August 5, 2003; in revised form October 22, 2003